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The temporal evolution of three-dimensional structure in an electrorheological fluid under nonequili-
brium, high-field conditions is examined by a computer-simulation method similar to that of Klingen-
berg, van Swol, and Zukoski [J. Chem. Phys. 91, 7888 (1989)]. A variety of characteristic real-space
properties (e.g., the radial distribution function) and the static structure factor S(q) are monitored dur-
ing the simulation. The field-induced polarization of particles causes rapid chain formation followed by
a kinetic trapping into a complicated gel-like state with no obvious lateral ordering. For all volume frac-
tions considered, the first percolating chain appears at ten times the average time to first contact.
Quenching of the gel is nearly complete on an order of magnitude longer time scale. The formation of
chains results in the growth and narrowing of Bragg-like peaks in S(q) along the field direction. In the
direction perpendicular to the field, the first peak in S(q) also grows and shifts to smaller g.

PACS number(s): 82.70.Dd, 61.20.Ja, 78.20.Dj, 83.70.Hq

I. INTRODUCTION

Since the pioneering work of Winslow [1] it has been
known that, upon application of an electric field, the
suspended dielectric particles in an electrorheological
(ER) fluid align themselves into chains and columns
parallel to the field. This structural change is accom-
panied by a dramatic increase in the apparent viscosity of
the suspension [2,3]. The time scales on which these
structural and rheological changes occur are important
considerations for the design of ER fluid devices [4,5].

Most theoretical models of ER fluid structure have em-
ployed the techniques of equilibrium statistical mechanics
[6-13]. Above a certain threshold field, this approach
predicts complete phase separation with the particles
condensing into a body-centered-tetragonal (bct) struc-
ture [10—12]. Halsey and Toor [9] have argued that such
structure formation occurs in two distinct steps; chains
and columns first form on an aggregation time scale f,
followed by a coarsening of the columns on a time scale
t,. The coarsening time is predicted to be independent of
field. For the short-time kinetics, Halsey and Toor em-
ploy a quasiequilibrium approach that applies only at rel-
atively low fields (just above threshold). Most practical
ER devices, on the other hand, would operate in the com-
plementary high-field limit [3] where the initial aggrega-
tion process is much faster than the time required to re-
lax to a quasiequilibrium state. In this regime, the aggre-
gation is ballistic in nature (as opposed to diffusive) and
the particles are rapidly quenched into local potential
minima that develop out of the initial configuration.

The nonequilibrium response at high fields is difficult
to treat analytically [14]. Of the few experimental studies
that have been reported [5,15-17], the most notable are
the recent optical transmittance measurements of Ginder
and Elie [17]. These authors observed that in ac fields
where electrophoretic effects are unimportant, ¢, < Eg 2,
where E is the applied (rms) field. This is what one ex-
pects for particles moving in a viscous medium under the
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influence of field-induced dipolar forces [18]. Additional
information on the kinetics of structure formation in high
fields is available from computer simulations [19-23].
The most extensive results have been reported for two-
dimensional (2D) systems by Klingenberg, van Swol, and
Zukoski (KvSZ) [19]. In three dimensions (3D), the ini-
tial aggregation process has been examined only peri-
pherally in the simulations of Whittle [21] and Melrose
[23]. The results of the latter study are particularly in-
teresting in that they suggest the formation of a quenched
gel-like state with no obvious ordering perpendicular to
the field.

In this paper, I present a more thorough analysis of the
early stages of 3D structure formation in the high-field
limit of ER fluids with use of a computer-simulation
method similar to that of KvSZ [19]. The key ingredients
of this approach are (1) field-induced interparticle forces
based on the point-dipole approximation, (2) a hard-core
repulsion to prevent particle overlap, and (3) a Stokes
drag treatment of the hydrodynamic resistance of the
suspending fluid. Although very approximate, this
method is believed to capture most of the essential quali-
tative physics of ER fluids [3]. Equally important for the
present study is the computational efficiency of this ap-
proach, which allows for extensive configuration averag-
ing. Such extensive averaging is necessary here because
the nonequilibrium nature of the high-field response
makes it difficult to obtain accurate statistics, particularly
for the time evolution of the static structure factor S (q).

The trade-off between accuracy and computational
efficiency is always a major concern in computer simula-
tions. Without question, the most accurate simulation
method yet developed for ER fluids is that of Bonnecaze
and Brady [22], which includes a much more complete
treatment of electrostatic and hydrodynamic forces than
the present approach. To date, however, that approach
has been applied primarily to 2D systems of 25 particles
(on a Cray supercomputer). Here, I average over as
many as 500-1000 3D realizations of 256 particles (on an
IBM workstation).
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The organization of this paper is as follows. Section II
reviews the computer-simulation method of KvSZ [19]
and emphasizes the novel aspects of the present im-
plementation. The temporal evolution of real-space
properties (e.g., pair distribution function, cluster size)
are presented and discussed in Sec. III. Section IV de-
scribes the temporal evolution of S(q), which is the
quantity most easily probed by light-scattering experi-
ments. The paper concludes in Sec. V with a few per-
spective comments. :

II. SIMULATION METHOD

An ER fluid is modeled here, as in Ref. [19], as a neu-
trally buoyant, monodisperse suspension of hard spheres
of diameter o and dielectric constant K, in a fluid of
dielectric constant k, and viscosity 7. Both the particles
and the fluid are assumed to be nonconducting [24]. Be-
cause of the dielectric mismatch, conveniently character-
ized by the parameter

K,—K
B=”+—2f , (1)
Kp T 2Ky

the application of an electric field E induces polarization
forces between the particles [25]. In Ref. [19], a set of
parallel-plate electrodes giving rise to the field was explic-
itly included in the simulation. Here I assume that the
separation between these electrodes is orders of magni-
tude larger than o (as it would be in most applications)
and I concentrate on the bulk response where particle-
electrode interactions are negligible. What this means in
practical terms is that I consider a simulation cell with
periodic boundary conditions in all three dimensions, in-
stead of having two conducting boundaries as in Ref.
[19].

The motion of particle i is described in the KvSZ
method [19] by Newton’s equation of motion

d’R; S dR; 2)
= i — 3o —— .

dr? jé,., U7

m

Here R; is the position of the particle at time ¢, the first
term on the right is the force due to other particles, and
the second term is the Stokes drag effect of the interven-
ing fluid. The force on particle i due to the jth particle,
separated by a distance R;; in the direction €,, is assumed
to be of the form

4
o .
F,;=F, }Tj [(3 cos’6;; —1)&, +( sin26;; )8,]
e Ry )

The first term in Eq. (3) is the polarization force calculat-
ed for point dipoles with local field corrections neglected;
the second term is an effective hard-core repulsion. The
dipole-dipole interaction is anisotropic in nature with 0,
the angle between €, and the field; €, is a unit vector per-
pendicular to €,, defined previously in Fig. 1 of Ref. [19].
The magnitudes of both interactions in Eq. (3) are scaled
by the dipole force,
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where ¢ is the permittivity of free space, for convenience.

The limitations of the above model are by now well
known [26]. The assumed dipole interaction is only
quantitatively reliable for B <<1 or for particles far from
contact. Corrections due to many-particle enhancements
and multipole effects have been shown to increase the
electrostatic forces in some cases by over an order of
magnitude [7,24,26—-28]. The response times in the
present simulations are thus most likely overestimated.
The structures that develop, however, are expected to be
qualitatively correct since these are determined primarily
by the anisotropy of the interactions far from contact,
which is unchanged by these corrections. The Stokes
drag treatment of hydrodynamic resistance in Eq. (2) is
also quantitatively unreliable except in the most dilute
suspensions [22,29]. For the volume fractions of interest
here (¢=0.15-0.4), many-particle hydrodynamic in-
teractions and lubrication forces may also be significant.
As alluded to in the Introduction, the main justification
for the neglect of such complicated hydrodynamic and
electrostatic effects in the present work is that they would
be too costly in terms of computer time. A further limi-
tation of Eq. (3) is the rather arbitrary repulsive force
chosen to prevent particle overlap. The steep exponential
is about as close to an ideal hard-core interaction as one
can include in a simulation without requiring a compli-
cated algorithm for integrating the equations of motion.
KvSZ showed [19] that a much softer repulsion tends to
produce only isolated chains of particles, which is con-
trary to what is observed experimentally [15]. Of course,
a hard-core repulsion is only a caricature of the short-
range interactions in real ER fluids, which are undoubt-
edly strongly dependent on the choice of materials [3].

Equation (2) also neglects the Brownian forces that re-
sult from the thermal motion of molecules in the
suspending fluid. These forces are on the order of kT /o
and are responsible for the diffusive aggregation of parti-
cles at low fields [9]. The high-field limit of interest here
is defined by the condition that F,>>kT/o. This in-
equality is very well satisfied in the majority of cases of
practical interest [3]. The neglect of Brownian effects is
thus an excellent approximation in this limit since parti-
cle motion is overwhelmingly dominated by polarization
forces.

The simplicity of the present model allows for a con-
venient transformation to dimensionless variables (denot-
ed by asterisks). Scaling all distances and forces by o and
Fy, respectively, yields rf =R; /o and f};=F,;/F,. The
natural time unit, first introduced in Ref. [19], is

e 3mrno? __ 16y
F, e ;B°E}

This is essentially the time it takes a particle to move a
distance o while subjected to a constant force F,. Since
all characteristic times in the present simulations are pro-
portional to 7, Eq. (5) describes how such times are
affected by various parameters. The E 2 scaling ob-
served in the optical transmittance measurements of
Ginder and Elie [17], for example, follows immediately

(5
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from this expression. Absolute time units may be ob-

tained by rewriting Eq. (5) in the form
1.817(Pasec)

K BEq(kV/mm)]?

(6)

T(sec)=
For the typical values [3] ky=2, p=0.5, n=0.1Pasec,

and Ey=1 kV/mm, Eq. (6) yields 7=0.36 sec. In terms
of rf, f};, and t* =t /7, Eq. (2) may be written as

d’r} dr}

= fx——— | (7)
d(t*)2 j(éi) ] dt*
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F(,T2

For most realistic parameters (e.g., the above, together
with 0 =1 um and m =107 !2 kg), the quantity in square
brackets in Eq. (7) is vanishingly small (~107°). This in-
dicates that particle motion is strongly damped and that
inertial effects may be safely neglected. The present
simulations, like those of KvSZ [19], are thus based on
the simple first-order equation of motion

LTI (®)
at* Gy v

The simulation cell here is chosen to be cubic with one
axis aligned with the field and periodic boundary condi-
tions. For a cell containing N particles, the length of a
side of the cube is chosen to be L* =(7TN/6¢)1/3, where
¢ is the desired volume fraction [30]. In most previous
ER fluid simulations [19-23], initial configurations in the
absence of a field were generated by randomly positioning
particles one at a time so that no two particles overlap.
This method of “random sequential addition” [31] runs
into the well-known ‘“parking problem” [32] at high
volume fractions (¢ > 0.32) and, even at low volume frac-
tions, produces configurations that differ in subtle ways
from those of an equilibrium ensemble for a hard-sphere
liquid [31]. To avoid these problems in the present work,
I first place the N particles on a face-centered-cubic (fcc)
lattice and generate an initial random configuration by
letting the system evolve via a Monte Carlo (MC) algo-
rithm [33]. In each MC step, each coordinate of every
particle is allowed to change by some random value be-
tween —&r* and +8#*; the move of any given particle is
rejected if it causes particles to overlap and accepted oth-
erwise. The value of 8r* is adjusted every 30 MC steps to
keep the probability of acceptance near 30%. The melt-
ing of the initial fcc lattice is monitored through the
mean-squared displacement per particle and the structure
factor for a fcc reciprocal lattice vector. For the volume
fractions considered here, I have found that 1000 MC
steps is generally sufficient to ensure a random starting
configuration. I then generate different starting
configurations for the same ¢ by continuing the MC evo-
lution 100 steps at a time.

The starting configuration describes the initial condi-
tions when the field is instantaneously applied at ¢*=0.
At that time the system begins to evolve according to Eq.
(8). This equation is integrated here using Euler’s method
with a time step Az*=(1.0-1.25)X 1073, Larger values
of At*, although desirable for probing longer time scales,
were found to produce prohibitively large forces because
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of the steep exponential repulsion in Eq. (3).

The choice of N is also a compromise. Since the com-
puter time scales as N2, it is computationally more
efficient to generate good statistics by making many runs
at smaller N than a few runs at large N. Too small a
value of N, however, greatly limits the length scale on
which structural properties can be probed and the resolu-
tion with which the structure factor can be determined
(cf. Sec. IV). Unless otherwise indicated, the present re-
sults were obtained with N =256. Tests performed at
larger and smaller N showed no significant differences.

One final consideration is the range of interparticle in-
teractions in Eq. (3). Here, as in most previous simula-
tions [19-21,23], I simply cut off these interactions
beyond a separation r*. For most runs with N =256, 1
use 7S =3.5, which is always smaller than L*. While
some properties of ER fluids may well be influenced by
the long range of dipolar forces (e.g., the predicted coars-
ening on long-time scales [9,34]), the present results for
the short-term kinetics in high fields are not strongly
dependent [35] on the choice of 7.

III. REAL-SPACE PROPERTIES

As an example of the evolution of structure in 3D, I
first consider a simulation based on a single realization of
108 particles with ¢=0.25. A complicating factor in 3D
is the difficulty in visualizing the results. Figure 1 shows
projections of the simulation cell along the field direction
with the diameter of the particles (circles) in proper pro-
portion to the cell size. At t*=0 in Fig. 1(a), the parti-
cles are randomly distributed and almost the entire pro-
jected area is occluded by at least one particle. Figures
1(b)-1(d) show the same projection at times t*=1, 10,
and 100, respectively. According to Eq. (3), pairs of par-
ticles with 6;; <54.7° attract each other and those with
0,; > 54.7° repel. This produces significant particle chain-
ing along the field direction (i.e., perpendicular to the
projection), which is already evident by t*=1. At longer
times, the chains become increasingly well aligned due to
the lateral motion of the particles. The projected area
not blocked by particles increases dramatically from
t*=0 to 100. Figure 2 shows a projection at a still later
time (¢*=1000; with the simulation cell repeated period-
ically in the lateral directions to emphasize the continuity
of structure. Only minor changes appear to have oc-
curred between ¢ *=10 and 1000. If the simulation were
extended further, the particles would remain relatively
fixed. A longer run is not practical, however, as Fig. 2 al-
ready corresponds to 10° time steps, each of which re-
quires on the order of 0.1 sec of CPU time for N =108 on
the IBM RS/6000 workstation used here.

Figure 3 shows a 3D perspective drawing of the simu-
lation cell for the final structure in Fig. 2. Here the
chains are more easily visualized and it is clear that not
all “chains” extend across the entire cell and some con-
tain as few as two particles. The chains themselves have
aggregated into a complicated gel-like state with each
chain typically connected to only two or three others.
This state was first identified by Melrose [23] and is found
in all of the present simulations. Its existence is a conse-
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FIG. 1. Projections in a plane perpendicular to the field of a
simulation cell containing 108 particles at (a) t*=0, (b) t*=1,
(c) t*=10, and (d) t *=100. The volume fraction is 0.25.

FIG. 2. Projection in a plane perpendicular to the field for
the same simulation as in Fig. 1 at *=1000. The simulation
cell is repeated here to emphasize the periodic boundary condi-
tions.

quence of the kinetic trapping at high fields that impedes
the formation of the more compact bct lattice structure
predicted by equilibrium theory [10—12]. The contact be-
tween two neighboring chains in Fig. 3 is similar to that
in a bct lattice, but there is no obvious lateral ordering in
the gel state.

Figure 1 suggests that the main features of the gel form
by t*=~10. For the typical ER fluid parameters discussed
in Sec. II, this yields a formation time on the order of
seconds (or even shorter, given that the present model un-
derestimates polarization forces). Eventually, of course,
equilibrium considerations must win out, but it is unclear
whether the simple picture of coarsening proposed by

FIG. 3. Three-dimensional perspective drawing of the simu-
lation cell for the ¢ * = 1000 structure in Fig. 2.
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Halsey and Toor [9] remains valid once the gel has
formed. The rapidly formed gel thus most likely dom-
inates the high-field behavior in experiments and devices.
While it is unlikely that the resulting shear forces are
significantly different than those for isolated chains, a de-
tailed examination of the mechanical properties of the gel
would certainly be desirable.

A more quantitative picture of structural evolution is
obtained by averaging over many simulations for a given
¢ beginning with different realizations at t*=0. The
real-space results discussed in the remainder of this sec-
tion are based on averages over 50 runs with N =256.

Figure 4 shows the calculated radial distribution func-
tion [33] (RDF),

(r*)=—"— 8(r*—rk), 9)
go 66N % j(zs&i) Y

for $=0.25 at t*=0, 1, and 10. The ¢*=0 result is in
excellent agreement with the known equilibrium RDF for
a hard-sphere liquid [36] with ¢=0.25. (Note that this
would not be the case if the initial configurations were
generated by random sequential addition [31].) As soon
as the field is applied, the main peak in the RDF at r*=
grows and narrows at a rapid rate. This results from
pairs of particles, particularly those with 6;; <54.7°, be-
ing attracted toward contact. This same attraction, to-
gether with the repulsion between particles with
9,-j >54.7°, causes a depletion in the RDF for
1.05<r*<1.6. The appearance of peaks at r*~2 and
r*=3 in Fig. 4 confirms that chaining has already begun
to occur by t*=1. The small peak at »*~=~V'3 is caused

2 (a)
1._
0 1 1
8_(b) * 7
t =1
O
S 4t 1
o A .
8 (c) . .
t =10
| W
o 1 1
0 1 2 3

FIG. 4. Radial distribution function for ¢=0.25 at (a) t* =0,
(b) t*=1,and (c) t*=10.
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by a particle trapped in a local potential minimum adja-
cent to a chain segment; an example is shown in Fig. 5
where particle 5 is separated by r*~V'3 from particle 2.
By t*=10, all of the subsidiary peaks in the RDF have
grown _considerably, including an additional peak at
r*~V7. This new peak corresponds to the separation
between particles 1 and 5 in Fig. 5.

The anisotropy of the present problem implies that the
full pair distribution function g (r*) depends on both r*
and the angle 6 between r* and the field direction. This
function may be expanded as

g(r*,0)= i g,(r*)P,(cosf) , (10
n=0

where n is even and P, (x) is the nth-order Legendre poly-
nomial [37]. The n =0 term in Eq. (8) is the RDF al-
ready considered. In many previous studies of ER fluids
[6,7,21], Eq. (10) has been truncated at » =2. While this
approximation is reasonable in the low-field liquid state
[7,13], it is unreliable in the present context. Figure 6
shows an enlargement of the g,(»*) results from Fig. 4(b)
along with the corresponding quantities g,(r*) and
g4(r*) for t*=1. Even at this relatively short time,
g4(r*), and higher n terms, are as significant as g,(r*).
The strong anisotropy associated with the formation of
strongly aligned chains is thus poorly described by only
the low-order terms in Eq. (10).

The unusual structure in g,(7*) and g,(r*) near r*=
in Fig. 6 is a consequence of the slightly softened ‘“hard-
core” repulsion in Eq. (3). The zero-force condition in
the present model gives a separation between particles
along a chain of »*=0.993. The stable position for a par-
ticle adjacent to a chain, by contrast, corresponds to the
slightly larger separation (e.g., 3-5 in Fig. 5) of
r*=1.009. Since 6;; in the former case is close to 0° and
in the latter case is close to 60°, the contributions to
g,(r*) and g,(r*) are positive on the low r* side of the
first RDF peak and negative on the high r* side. The
negative regions of g,(r*) at larger r* also represent an
excess of particle pairs with 6;;>54.7°. It is these pairs
that exhibit the largest relative motion once particles that
were initially in close proximity along the field direction
have chained up.

Figures 7(a) and 7(b) show the time dependences of the
mean-squared displacements of particles in directions
perpendicular and parallel to the field, respectively, for
¢=0.15 (solid), 0.25 (dashed), and 0.35 (dotted). The re-
sults are consistent with previous simulations [19,21] in

0000
[0}

FIG. 5. Typical configuration of particles 1-4 in a chain with
particle 5 in an adjacent potential minimum.
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FIG. 6. Components of the full pair distribution function [cf.
Eq. (10)] for $=0.25at t*=1.

that they show an initially rapid response followed by a
gradual approach to saturation. The mean lateral dis-
placement for a given ¢ is significantly larger than that
along the field, but in all cases the total rms displacement
is less than a particle diameter. As ¢ increases, the mag-
nitudes of the displacements decrease and the curves level
off more rapidly. Both of these effects are to be expected
from the smaller average initial separation between parti-
cles at larger ¢. The near saturation of the displacements
in Fig. 7 for ¢t* on the order of 10 is consistent with the
lack of substantial changes in structure on longer time
scales in Figs. 1 and 2.

Further evidence that the structure is largely quenched
by t*=10 is provided by the temporal evolution of the
average nearest-neighbor coordination (NN) in Fig.
7(c). Nearest neighbors here are defined by the condition
that 7 <1.03, which includes nearly all of the first RDF
peaks in Fig. 4. The average coordination approaches
saturation even more rapidly than the mean-squared dis-
placements for a given ¢. For all three ¢ considered,
(NN) saturates at a value intermediate between that of
an isolated chain (2) and that of a 2D triangular (6) or 3D
bet (8) lattice. This is another characteristic of the kineti-
cally trapped gel state discussed above. Not surprisingly,
the average coordination of the gel increases with ¢.

Several groups [5,19] have suggested that the onset of
the field-induced changes in the rheological properties of
an ER fluid is determined by the appearance of the first
chain that spans the electrodes. Within the present simu-
lation model, this corresponds to the formation of the

0.0 1 1 1

<NN>

FIG. 7. Time dependences of the mean-squared displace-
ments per particle in the (a) X and (b) 2 directions, with Z along
the field, and of the (c) average number of nearest neighbors
(NN) (r} <1.03). The solid, dashed, and dotted curves corre-
spond to ¢=0.15, 0.25, and 0.35, respectively.

first percolating [38] path along the field direction. To
identify connected clusters of particles, I have general-
ized the lattice “multiple labeling algorithm” of Hoshen
and Kopelman [39] to the continuum case. As above, I
consider particles i and j connected (i.e., nearest neigh-
bors) if ;; <1.03. Because of the small system size, the
time at which the first percolating cluster appears varies
greatly from run to run. It is thus convenient to follow
KvSZ [19] and monitor the average cluster size [38]

1 <.
Sw=y 2 mt (11)

where m; is the number of particles in the kth cluster
and the prime indicates that the sum includes only non-
percolating clusters. Figure 8 shows the temporal evolu-
tion of S,, for the three volume fractions considered in
Fig. 7. The shapes and ¢ dependence of these curves are
similar to what had been found previously in the 2D
simulations of Ref. [19]. Also consistent with that work,
I find that the locations of the peaks in S,, correspond
very well to the average times at which the first percolat-
ing clusters appear [40]. It is thus useful to use the loca-
tion of the S,, peak as a measure of the aggregation time
tJ), discussed in Sec. I.

The open circles in Fig. 9 show the values calculated
from this definition of ¢, for a range of volume fractions.
An alternative measure of ¢, shown in the figure as filled
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FIG. 8. Time dependences of the average cluster sizes [cf.
Eq. (11)] for ¢=0.15 (solid), 0.25 (dashed), and 0.35 (dotted).

diamonds, is the time at which (NN) [the quantity in
Fig. 7(c), the average number of nearest neighbors] first
reaches two. This latter definition is simpler computa-
tionally and tracks the location of the maximum in S,
remarkably well. The good agreement between these two
measures is a consequence of the largely one-dimensional
nature of a percolating chain in the present problem. In
a more isotropic system, one would generally find a larger
average coordination at the onset of percolation [38].

An even shorter characteristic time in ER fluids is the
“flocculation” time ¢, or average time to first contact.
Shapiro, Shalom, and Lin [18] derived analytic expres-
sions for this quantity within a model very similar to that
considered here. In the high-field limit, and for nondilute
volume fractions, the relevant expression reduces to
5/3

s —1

66
in dimensionless units. (Note that the —1 in the square
bracket improves upon the dilute limit expression con-

(12)

t
f 40

2.0 +

FIG. 9. Volume fraction dependence of the aggregation time
t¥, defined by either the location of peaks in S,, (open circles)
or the condition that (NN)=2 (filled diamonds). The solid
curve is ten times the flocculation time ¢/ defined in Eq. (12).
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sidered by Ginder and Elie [17].) The solid curve in Fig.
9 shows 10t/ as a function of ¢. Remarkably, this curve
describes the simulation data for ¢ extremely well. The
characteristic aggregation time, defined by the point at
which percolation occurs, may thus be simply estimated
as t; =10tf, with ¢t} given by Eq. (12). By contrast, there
does not appear to be any theoretical justification for the
exponential dependence of ¢ on ¢ assumed by Hill and
Van Steenkiste [5] in their fit to (essentially 2D) experi-
mental data.

The flocculation times given by Eq. (12) are within a
factor of 2 of those estimated from the condition that
(NN)=1. On still shorter time scales, for the higher
volume fractions considered here, {NN) actually dips
slightly before increasing. This effect, which is impossi-
ble to see on the scale of Fig. 7(c), results from the repul-
sion between some pairs of particles which are initially
close to contact. It is also interesting to note that the
mean-squared displacements in Figs. 7(a) and 7(b) initial-
ly vary as (z*)?, up to about 0. 5tf. This behavior may
also occur in Fig. 4 of Ref. [19], although it is not men-
tioned explicitly in that work. In the widely studied case
of aggregation dominated by thermal diffusion [41], the
mean-squared displacements are expected to increase
linearly with ¢*. The short-time quadratic increase ob-
served here is most likely a characteristic feature of
ballistic aggregation.

It is useful to summarize the temporal evolution of ER
fluid structure in high fields as follows. Pairs of particles
first come together, or flocculate, on dimensionless time
scales of the order of ¢ =0.01-0.2. The first percolating
chain appears at roughly 10z ; . A fully connected gel-like
state is almost entirely quenched by 100z/. Additional
minor rearrangements and further connections continue
to be made on orders of magnitude longer time scales.
Eventually, a complete condensation into a bct lattice
[10—12] may occur although it is unclear whether the ap-
proach to equilibrium [9] once the gel has formed is ever
rapid enough to be of practical concern.

IV. STRUCTURE FACTORS

In principle, light scattering provides one of the most
direct probes of the structure of ER fluids and other sus-
pensions [42,43]. Since the particles are usually poorly
index matched to the suspending medium, most ER fluids
have a milky appearance due to strong multiple scatter-
ing. Such strong scattering can either be used to advan-
tage [17], or can be reduced by designing a model fluid
with a better index match [43]. In either case, the
scattering at any given time is strongly dependent on the
static structure factor of the fluid [36],

S(q):N_IEEeiq.(R,‘Rj) , (13)
ij

which is a function of the wave vector q. Previously, the
behavior of this function in ER fluids had only been ad-
dressed for equilibrium conditions [37,44]. The present
simulations represent the first treatment of the temporal
evolution of S(q) in the nonequilibrium high-field re-
gime.
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The static structure factor is closely related [36] to the
Fourier transform of the pair distribution function con-
sidered in Eq. (10). For the present highly anisotropic
case, it is easier, albeit time consuming, to calculate S (q)
directly in reciprocal space [45]. First it is convenient to
introduce the dimensionless wave vector q* =qo /27 and
to rewrite Eq. (13) in the more computationally efficient
form

S(q*)=N"!

2
> cos(2mq* r}) ]

2

+N 7' | 3 sin(2mq* 1)) (14)
:

The periodic boundary conditions imposed in the simula-
tions restrict the allowed wave vectors to the mesh
q*=(n,,n,n,)/L* where n,, n,, and n, are integers.
This clarifies the statement at the end of Sec. II that it is
the choice of N, and hence L *, that determines the reso-
lution with which S(q) can be calculated. In the present
simulations it is not the resolution that is a problem but
the difficulty in obtaining accurate statistics by direct
evaluation of S(q). This problem is usually overcome in
equilibrium molecular dynamics by extensive time
averaging [33] (typically over > 10° time steps). For the
dynamical nonequilibrium system studied here, adequate
statistics are generated by configuration averaging over
500-1000 runs with different starting configurations.
The computational cost of such calculations limits the
maximum times considered in this section to ¢* on the
order of one.

Figure 10 shows S(q*) at t*=0 for three different
volume fractions. The open and closed circles represent
simulation results along the X and Z axes, respectively,
averaged over 1000 runs with N =256. For comparison,
the solid curves show the isotropic equilibrium structure
factors predicted for hard-sphere fluids by analytic solu-
tions of the Percus-Yevick integral equations [46]. The
reliability of this analytic theory for hard spheres has
been demonstrated many times previously [36]. That the
present simulations agree so well with this theory is tes-
timony to the great care taken in Sec. II to ensure that
the random starting configurations are representative of
an equilibrium ensemble. Two other things to notice
about Fig. 10 are that the spacing between calculated g *
points increases with volume fraction and that the statist-
ical scatter in the results is more pronounced at larger g *
and at smaller ¢. The first of these follows from the fact
that for fixed N, L* decreases with ¢. The second reflects
the greater difficulty in configuration averaging Eq. (13)
for large values of the argument.

For t*+0, S (q*) is anisotropic with the same symme-
try as Eq. (10). It is sufficient to consider a single qua-
drant of the plane q*=(g¥,0,q[) with g},g[ 20 and 2
the field direction [47]. Figure 11 shows representative
plots of S(g¥,q) at (a) t*=0.5 and (b) t*=1.5 for
¢=0.25. Figure 9 indicates that the shorter of these
times corresponds roughly to the percolation point for
¢=0.25. Already by this time, significant anisotropies
are apparent in S(q*), including Bragg-like peaks along
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FIG. 10. Open and closed circles represent calculated values
of the structure factor S(g*) for the dimensionless wave vector
g *=gqo /27 along two orthogonal directions for (a) $=0.15, (b)
$=0.25, and (c) $=0.35 at t*=0. Solid curves are analytic
predictions for hard-sphere fluids based on the Percus-Yevick
approximation.

the field direction at integral values of gf. Such peaks
are the reciprocal space indicator that chain formation
has already begun to occur. By the still longer time con-
sidered in Fig. 11(b), the Bragg peaks have become more
prominent and the peak in S(q*) perpendicular to the
field has also grown and shifted to ¢} <1. The Bragg
peaks fall off only slowly perpendicular to the field due to
the absence of any significant lateral ordering in the sys-
tem. As was the case with the pair distribution function
in Eq. (10), the very strong anisotropies in Figs. 11(a) and
11(b) are only poorly described by a truncated expansion
in Legendre polynomials.

For emphasis, the S(q*) results along the two axes in
Fig. 11 are reproduced in Fig. 12 together with the corre-
sponding results for the shorter time t*=0.1. The solid
and dashed curves are spline fits to the calculated points
parallel and perpendicular to the field, respectively. The
Bragg peaks along the field clearly evolve by growing and
narrowing continuously out of the initial liquid structure
factor. The shift and growth of the first peak in S(q*)
perpendicular to the field is also striking. The inverse of
the location of this peak gives a characteristic measure of
the spacing perpendicular to the field, discussed further
below. The second peak in the perpendicular direction,
near ¢*=1.15 for t*=1.5, results from the spacing be-
tween chains in close contact [48]. The relatively small
differences between the two directions at z*=0.1 are
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FIG. 11. Three-dimensional plots of the structure factor
S(q*) in a quadrant bounded by q* parallel (||) and perpendicu-
lar (1) to the field direction for $=0.25 at (a) t*=0.5 and (b)
t*=1.5.

reminiscent of the differences predicted for the low-field
liquid state of an ER fluid in equilibrium [7,13]. In the
high-field case considered here, S(q*) is clearly sensitive
to the structural changes that occur on very short time
scales, even before the first percolating chain appears.

The qualitative features of S(g},q) at other volume
fractions are similar to those in Fig. 11. A sampling of
results along the two principal axes are shown here in
Figs. 13 and 14, respectively, for ¢=0.35 and 0.15. The
main difference between the three cases is that the magni-
tude of the field-induced changes decreases with increas-
ing volume fraction.

This last statement will now be quantified by examin-
ing two characteristic features of the calculated structure
factors. The first is the height of the first maximum along
the field direction, denoted S|™**. Figure 15 plots the
temporal evolution of this quantity for a number of
different runs [35] against the ratio ¢* /¢ with ¢} calcu-
lated as in Eq. (12). Scaling the time in this manner
makes it clear that all of the curves exhibit the same
trend. It also shows that the absolute time scale for
changes in S(q*) varies with ¢ in the same way as the
real-space changes in Sec. III. Recall that percolation
occurs at t*/tf~10 and that real-space properties satu-
rate at about ten times this ratio, which Fig. 15 suggests
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S(q)

FIG. 12. Calculated structure factors along directions paral-
lel (solid) and perpendicular (dashed) to the field for $=0.25 at
(@) t*=0.1,(b) t*=0.5,and (c) t*=1.5.

will also be the case for f,“a".

The magnitude of the
field-induced changes in S| increases significantly with
decreasing volume fraction, as might be expected from
the previously observed increase in the magnitude of
real-space displacements in Fig. 7.

The second quantity to be extracted from S(q*) is the
inverse of the ¢} value corresponding to the first peak in

the direction perpendicular to the field. This characteris-

s(3)

FIG. 13. Same as Fig. 12 but for ¢=0.35 at (a) t*=0.1 and
(b) t*=1.0.
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(a) t*=0.1

FIG. 14. Same as Fig. 12 but for ¢=0.15 at (a) t*=0.1 and
(b) t*=2.5.

tic lateral spacing R} is plotted against ¢*/¢f in Fig. 16.
The qualitative behavior is again similar in each run [35]
with the magnitude of the variation increasing with de-
creasing ¢. A rough extrapolation from Fig. 16 to the
saturation limit suggests that the R} corresponding to
the $=0.25 gel state in Fig. 2 is roughly twice the parti-
cle diameter. Visually, this appears to be a reasonable
measure of the length scale on which the most severe
density fluctuations occur in the perpendicular direction.
It is important to emphasize that R | is not simply a mea-
sure of the “width” of “columns” [34]. Chains tend to be
more isolated at lower ¢, as suggested by the coordina-
tion number information in Fig. 7(c). A true measure of

max

SII

o 1 1 1
0 10 20 30 40

t/t)]

FIG. 15. Maximum value of the structure factor along the
direction parallel to the field as a function of ¢*/tf, with ¢}
given by Eq. (12). The solid and dashed curves are averages
over 1000 and 500 runs, respectively, for the indicated volume
fractions. (See also Ref. [35].)
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2.0 i

*Q;i 1.5

t./tf‘

FIG. 16. Characteristic spacing obtained from position of
maximum in S(q) for q perpendicular to the field as a function
of t*/tff, with ¢t} given by Eq. (12). The solid and dashed
curves are averages over 1000 and 500 runs, respectively, for the
indicated volume fractions. (See also Ref. [35].)

column width would thus vary with ¢ in the opposite
manner from that observed for R }.

V. CONCLUDING COMMENTS

In summary, I have presented a detailed study of 3D
structure formation in ER fluids under nonequilibrium
conditions based on the simulation method of KvSZ [19].
The volume fractions considered and the assumed domi-
nance of field-induced polarization forces over thermal
effects [3] were motivated by their relevance to practical
ER devices. On the longest time scales examined, the
particles become kinetically trapped into complicated
gel-like states composed of chains parallel to the field
with no obvious lateral ordering. Independent of volume
fraction, the formation time for this gel is roughly ten
times that at which the first chain appears, which is in
turn ten times the flocculation time. Evidence of this
hierarchy of time scales was obtained from various
characteristic measures of structure in real space. In ad-
dition, the present work has provided the first extensive
predictions for the time dependence of the static struc-
ture factor.

It is unfortunate that for the relatively concentrated
systems considered there are not yet any sufficiently
direct measurements of ER fluid structure with which to
compare. The most one can say is that the predicted de-
crease in the occluded area from Fig. 1(a) to Fig. 1(d) is
qualitatively consistent with the previously observed in-
crease [17] in the diffuse optical transmittance through a
commercial fluid in a large field. After the completion of
this work, a conventional light-scattering study of an
index-matched system with ¢=~0.05 was reported [43].
The observed structures are much more anisotropic than
any found here, even on time scales as short as a second.
The longer time response in these experiments is in quali-
tative accord with the scenario of column formation and



3372

coarsening proposed by Halsey and Toor [9]. The
present study suggests that this scenario breaks down at
higher volume fractions due to the rapid quenching of an
extended gel-like state. If future experiments prove this
to be correct, a more comprehensive examination (includ-
ing additional computer simulations) of the gel structure
and its mechanical properties would be warranted.
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